Table of Contents
Designing A Real-Time AI Pipeline For Human-like Video Conversations
Author

Date

Book a call
Introduction
The Vision: Modular, Real-Time Video AI for the Next Generation
- That modern pipelines like pipecat can orchestrate complex AI flows with plug-and-play flexibility.
- WebRTC and Next.js can deliver seamless, real-time user experiences in the browser.
- That integrating video AI into conversations is not just possible, but practical for future products.
Architecture Overview
Key components:
- Frontend: Next.js 13 (React 18) for fast, interactive UI and SSR capabilities.
- Backend: FastAPI (Python) for async signaling, static file serving, and API endpoints.
- Media Transport: SmallWebRTCTransport (via pipecat) abstracts away ICE/SDP headaches and enables real-time audio/video.
AI Services:
- STT: Deepgram Streaming for sub-300ms transcription.
- LLM: Google Gemini for long-context, high-accuracy dialogue.
- TTS: Cartesia for natural, high-fidelity speech.
- Video: Tavus for fast, lip-synced avatar generation.
Building the Pipeline
At the heart of our proof-of-concept is a Pipecat driven, modular media pipeline that moves seamlessly from browser-captured audio/video to a fully rendered, lip-synced AI avatar — and back again — all in real time.
Why Pipecat?
- Plug-and-Play Components – Swap STT, LLM, or TTS modules without touching the rest of the pipeline.
- Back-Pressure Awareness – Dynamically adapts to load, preventing buffer overflows and ensuring smooth audio/video playback even under high concurrency.
- Frame-Level Observability – Emits granular metrics per stage (e.g., STT delay, LLM token generation speed, TTS synthesis time) for proactive performance tuning.
- Extensible by Design – Adding emotion detection, sentiment scoring, or domain-specific reasoning is as simple as inserting another pipeline block.
WebRTC + Next.js: Real-Time Frontend Stack
- WebRTC for Media Transport – Enables direct, low-latency audio/video streaming between the browser and backend, reducing round-trip delays compared to traditional HTTP-based media flows.
- Next.js 13 + React 18 – Gives us server-side rendering (SSR) for initial load speed, concurrent React for responsiveness, and a modern developer experience for rapid iteration.
- Media I/O Integration – Our React components handle microphone, camera, and playback streams while seamlessly interfacing with the WebRTC transport layer.
Video AI Integration: Beyond Voice:
- Lip-Synced, Expressive Avatars – Matches generated speech perfectly to facial movement, making interactions more natural and engaging.
- Low Overhead, High Impact – Video synthesis is batched and streamed back with minimal latency overhead (~500–1000 ms), preserving conversational flow.
- Scalable Personalization – Avatars can be branded, personalized per user, or adapted to specific cultural and linguistic contexts.
Real-Time AI Conversation Pipeline: Frame & Packet Flow
High-Level Latency Overview
| Component | Service | Typical Latency | Notes |
|---|---|---|---|
STT
|
Deepgram Streaming
|
~200–30 ms | Ultra-low latency transcription from audio to text under optimal network conditions.
|
|
LLM
|
Google Gemini
|
~200–500 ms
| Latency depends on token count and compute provisioning; optimized APIs or batching help reduce time.
|
|
TTS
|
Cartesia
|
~200–400 ms
| Generates high-fidelity, natural-sounding speech.
|
|
Video
|
Video
|
~500–1,000 ms
| Fast lip-synced avatars; varies with resolution, duration, and GPU provisioning.
|
High-Level Pricing Overview
| Component | Pricing Model | Accurate Cost (per minute) | Notes |
|---|---|---|---|
|
Deepgram STT
|
Standard streaming tier: $0.08 per audio minute
|
$0.08
|
Published list price for Speech-to-Text API streaming mode.
|
|
Google Gemini
|
Gemini 2.5 Flash paid tier: $0.30 input + $2.50 output per 1M tokens (~750 tokens ≈ 1 min)
|
$0.0041
|
(0.30 / 1,000,000) × 750 + (2.50 / 1,000,000) × 750 ≈ $0.0041/min.
|
Cartesia TTS
|
Startup plan: $49/month for 1.25M credits (1 credit = 1 char; ~750 chars ≈ 1 min)
|
$0.0294
|
$49 / (1,250,000 ÷ 750) ≈ $0.0294 per minute of TTS at Startup tier.
|
|
Tavus Video
|
Starter plan video generation overage: $1.10 per minute
|
$1.10
|
Pay-as-you-go overage rate for AI video generation minutes beyond included quota.
|
|
Total
| $1.2135/min
| Sum of individual per-minute costs. |
Scope and Reuse: Where This Pipeline Can Go
Demo in Action: AI Conversational Interview
Other High-Impact Applications
Customer Support
Healthcare and Therapy
Education and Training
Conclusion: Takeaways for Builders & Visionaries
- Modularity is leverage – Pipelines like Pipecat let you adapt, swap, and scale at the speed of innovation.
- Latency is UX – Every 100 ms shapes the user’s experience. Tune it like your product depends on it because it does.
- Observability wins – Measure everything, or you’re flying blind.
- Video is the next frontier – Human-like avatars are now practical, scalable, and game-changing.
Whether you are building the next breakthrough or deploying AI to transform your business, now is the time to act.
Hope you find this article useful. Thanks and happy learning!
Dive deep into our research and insights. In our articles and blogs, we explore topics on design, how it relates to development, and impact of various trends to businesses.





